(1) 4x + 6y = -3
(2) 5x + 7y = -2
Multiplicar los miembros de la ecuación (1) por 5 y los de la ecuación (2) por -4; resultando que los coeficientes de "x" se igualan y son de signo contrario.
5(4x + 6y = -3) 20x + 30y = - 15
-4(5x + 7y = -2) -20x - 28y = 8
Sumando algebraicamente ambas ecuaciones, resulta:
20x + 30y = - 15
- 20x - 28y = 8
0 2y = - 7
Resolviendo la ecuación, tenemos: y = - 7/2
Sustituyendo el valor determinado en cualquiera de las ecuaciones originales, se obtiene:
(1) 4x + 6(-7/2) = - 3
4x - 21 = - 3
4x = - 3 + 21
x = 18 / 4
x = 9/2
(2) 5(9/2) + 7(-7/2) = - 2
45/2 - 49/2 = -
Su comprobación es:
4(9/2) + 6(-7/2) = - 3
18-21 = -3
-3 = -3
Por lo tanto los valores que satisfacen al sistema son:
x = 9/2 y y = -7/2
Iniciar sesión|Actividad reciente del sitio|Informar de uso inadecuado|Imprimir página|Con la tecnolog
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
(1) 4x + 6y = -3
(2) 5x + 7y = -2
Multiplicar los miembros de la ecuación (1) por 5 y los de la ecuación (2) por -4; resultando que los coeficientes de "x" se igualan y son de signo contrario.
5(4x + 6y = -3) 20x + 30y = - 15
-4(5x + 7y = -2) -20x - 28y = 8
Sumando algebraicamente ambas ecuaciones, resulta:
20x + 30y = - 15
- 20x - 28y = 8
0 2y = - 7
Resolviendo la ecuación, tenemos: y = - 7/2
Sustituyendo el valor determinado en cualquiera de las ecuaciones originales, se obtiene:
(1) 4x + 6(-7/2) = - 3
4x - 21 = - 3
4x = - 3 + 21
x = 18 / 4
x = 9/2
(2) 5(9/2) + 7(-7/2) = - 2
45/2 - 49/2 = -
-4/2 = -2-2 = -2Su comprobación es:
4(9/2) + 6(-7/2) = - 3
18-21 = -3
-3 = -3
Por lo tanto los valores que satisfacen al sistema son:
x = 9/2 y y = -7/2
Iniciar sesión|Actividad reciente del sitio|Informar de uso inadecuado|Imprimir página|Con la tecnolog