Odpowiedź:
[tex]\displaystyle \frac{\sqrt{3} }{2} -cosx > \sqrt{3} \\-cosx > \sqrt{3} -\frac{\sqrt{3} }{2} \\-cosx > \frac{\sqrt{3} }{2}/(-1)\\cosx < -\frac{\sqrt{3} }{2}\\x\in(\frac{5}{6} \pi +2k\pi ,\frac{7}{6} \pi +2k\pi )\quad k\in C[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
[tex]\displaystyle \frac{\sqrt{3} }{2} -cosx > \sqrt{3} \\-cosx > \sqrt{3} -\frac{\sqrt{3} }{2} \\-cosx > \frac{\sqrt{3} }{2}/(-1)\\cosx < -\frac{\sqrt{3} }{2}\\x\in(\frac{5}{6} \pi +2k\pi ,\frac{7}{6} \pi +2k\pi )\quad k\in C[/tex]