Jawaban:
[tex]\[2\log_{25}x + 5\log_{27}x - 3\log_{\frac{1}{2}}\][/tex]
To simplify this expression, let's use logarithmic properties:
[tex]\[2\log_{25}x + 5\log_{27}x - 3\log_{\frac{1}{2}} = \frac{2}{\log_{5}25}\log x + \frac{5}{\log_{3}27}\log x - \frac{3}{\log_{\frac{1}{2}}2}\log x\]
[/tex]
Now, simplify further:
[tex]\[2\log_{25}x + 5\log_{27}x - 3\log_{\frac{1}{2}} = \frac{2}{2}\log x + \frac{5}{3}\log x + \frac{3}{-1}\log x\][/tex]
Combine the terms:
[tex]\[\frac{1}{2}\log x + \frac{5}{3}\log x - 3\log x\]
Combine the coefficients:
[tex]\[\frac{1}{2} - \frac{5}{3} - 3 = -\frac{37}{6}\log x\]
So, the simplified expression is
[tex](-\frac{37}{6}\log x)..[/tex]
ᶜˡᵃⁱᶠʳ
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawaban:
[tex]\[2\log_{25}x + 5\log_{27}x - 3\log_{\frac{1}{2}}\][/tex]
To simplify this expression, let's use logarithmic properties:
[tex]\[2\log_{25}x + 5\log_{27}x - 3\log_{\frac{1}{2}} = \frac{2}{\log_{5}25}\log x + \frac{5}{\log_{3}27}\log x - \frac{3}{\log_{\frac{1}{2}}2}\log x\]
[/tex]
Now, simplify further:
[tex]\[2\log_{25}x + 5\log_{27}x - 3\log_{\frac{1}{2}} = \frac{2}{2}\log x + \frac{5}{3}\log x + \frac{3}{-1}\log x\][/tex]
Combine the terms:
[tex]\[\frac{1}{2}\log x + \frac{5}{3}\log x - 3\log x\]
[/tex]
Combine the coefficients:
[tex]\[\frac{1}{2} - \frac{5}{3} - 3 = -\frac{37}{6}\log x\]
[/tex]
So, the simplified expression is
[tex](-\frac{37}{6}\log x)..[/tex]
ᶜˡᵃⁱᶠʳ