Hasil dari [tex]\displaystyle{ \lim_{x \to 0} \frac{1-cos^3x}{sin^2x} }[/tex] adalah [tex]\displaystyle{\boldsymbol{e.~\frac{3}{2}}}[/tex].
Teorema pada limit adalah sebagai berikut :
[tex](i)~\lim\limits_{x \to c} f(x)=f(c)[/tex]
[tex](ii)~\lim\limits_{x \to c} kf(x)=k\lim\limits_{x \to c} f(x)[/tex]
[tex](iii)~\lim\limits_{x \to c} [f(x)\pm g(x)]=\lim\limits_{x \to c} f(x)\pm\lim\limits_{x \to c} g(x)[/tex]
[tex](iv)~\lim\limits_{x \to c} [f(x)\times g(x)]=\lim\limits_{x \to c} f(x)\times\lim\limits_{x \to c} g(x)[/tex]
[tex]\displaystyle{(v)~\lim\limits_{x \to c} \left [ \frac{f(x)}{g(x)} \right ]=\frac{\lim\limits_{x \to c} f(x)}{\lim\limits_{x \to c} g(x)} }[/tex]
[tex](vi)~\lim\limits_{x \to c} \left [ f(x) \right ]^n=\left [ \lim\limits_{x \to c} f(x) \right ]^n[/tex]
Rumus untuk limit fungsi trigonometri :
[tex]\displaystyle{(i)~\lim\limits_{x \to 0} \frac{sinax}{bx}=\lim\limits_{x \to 0} \frac{tanax}{bx}=\frac{a}{b} }[/tex]
[tex]\displaystyle{(ii)~\lim\limits_{x \to 0} \frac{ax}{sinbx}=\lim\limits_{x \to 0} \frac{ax}{tanbx}=\frac{a}{b} }[/tex]
[tex]\displaystyle{(iii)~\lim\limits_{x \to 0} \frac{sinax}{sinbx}=\lim\limits_{x \to 0} \frac{tanax}{tanbx}=\frac{a}{b} }[/tex]
[tex]\displaystyle{(iv)~\lim\limits_{x \to a} \frac{sin(x-a)}{(x-a)}=\lim\limits_{x \to a} \frac{tan(x-a)}{(x-a)}=1 }[/tex]
.
[tex]\displaystyle{ \lim_{x \to 0} \frac{1-cos^3x}{sin^2x}= }[/tex]
Tentukan nilai limitnya.
[tex]\displaystyle{ \lim_{x \to 0} \frac{1-cos^3x}{sin^2x} }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \frac{1-(cos^2x)cosx}{sin^2x} }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \frac{1-(1-sin^2x)cosx}{sin^2x} }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \frac{1-cosx+sin^2xcosx}{sin^2x} }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \left ( \frac{1-cosx}{sin^2x}+\frac{sin^2xcosx}{sin^2x} \right ) }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \left ( \frac{1-cosx}{sin^2x}\times\frac{1+cosx}{1+cosx}+cosx \right ) }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \left ( \frac{1-cos^2x}{sin^2x(1+cosx)}+cosx \right ) }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \left ( \frac{sin^2x}{sin^2x(1+cosx)}+cosx \right ) }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \left ( \frac{1}{1+cosx}+cosx \right ) }[/tex]
[tex]\displaystyle{=\frac{1}{1+cos0}+cos0 }[/tex]
[tex]\displaystyle{=\frac{1}{1+1}+1 }[/tex]
[tex]\displaystyle{=\frac{1}{2}+1 }[/tex]
[tex]\displaystyle{=\frac{3}{2}}[/tex]
> Menggunakan Aturan L'hospital :
[tex]\displaystyle{=\frac{1-cos^30}{sin^20} }[/tex]
[tex]\displaystyle{=\frac{0}{0} }[/tex]
Karena substitusi langsung hasilnya bentuk tak tentu, bisa kita gunakan aturan l'hospital.
[tex]\displaystyle{=\lim_{x \to 0} \frac{\frac{d}{dx}\left ( 1-cos^3x \right )}{\frac{d}{dx}\left ( sin^2x \right )} }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \frac{-3cos^2x(-sinx)}{2sinxcosx} }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \frac{3cosx}{2} }[/tex]
[tex]\displaystyle{=\frac{3cos0}{2} }[/tex]
[tex]\displaystyle{=\frac{3}{2} }[/tex]
Kelas : 11
Mapel: Matematika
Bab : Limit Fungsi
Kode Kategorisasi: 11.2.8
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
Hasil dari [tex]\displaystyle{ \lim_{x \to 0} \frac{1-cos^3x}{sin^2x} }[/tex] adalah [tex]\displaystyle{\boldsymbol{e.~\frac{3}{2}}}[/tex].
PEMBAHASAN
Teorema pada limit adalah sebagai berikut :
[tex](i)~\lim\limits_{x \to c} f(x)=f(c)[/tex]
[tex](ii)~\lim\limits_{x \to c} kf(x)=k\lim\limits_{x \to c} f(x)[/tex]
[tex](iii)~\lim\limits_{x \to c} [f(x)\pm g(x)]=\lim\limits_{x \to c} f(x)\pm\lim\limits_{x \to c} g(x)[/tex]
[tex](iv)~\lim\limits_{x \to c} [f(x)\times g(x)]=\lim\limits_{x \to c} f(x)\times\lim\limits_{x \to c} g(x)[/tex]
[tex]\displaystyle{(v)~\lim\limits_{x \to c} \left [ \frac{f(x)}{g(x)} \right ]=\frac{\lim\limits_{x \to c} f(x)}{\lim\limits_{x \to c} g(x)} }[/tex]
[tex](vi)~\lim\limits_{x \to c} \left [ f(x) \right ]^n=\left [ \lim\limits_{x \to c} f(x) \right ]^n[/tex]
Rumus untuk limit fungsi trigonometri :
[tex]\displaystyle{(i)~\lim\limits_{x \to 0} \frac{sinax}{bx}=\lim\limits_{x \to 0} \frac{tanax}{bx}=\frac{a}{b} }[/tex]
[tex]\displaystyle{(ii)~\lim\limits_{x \to 0} \frac{ax}{sinbx}=\lim\limits_{x \to 0} \frac{ax}{tanbx}=\frac{a}{b} }[/tex]
[tex]\displaystyle{(iii)~\lim\limits_{x \to 0} \frac{sinax}{sinbx}=\lim\limits_{x \to 0} \frac{tanax}{tanbx}=\frac{a}{b} }[/tex]
[tex]\displaystyle{(iv)~\lim\limits_{x \to a} \frac{sin(x-a)}{(x-a)}=\lim\limits_{x \to a} \frac{tan(x-a)}{(x-a)}=1 }[/tex]
.
DIKETAHUI
[tex]\displaystyle{ \lim_{x \to 0} \frac{1-cos^3x}{sin^2x}= }[/tex]
.
DITANYA
Tentukan nilai limitnya.
.
PENYELESAIAN
[tex]\displaystyle{ \lim_{x \to 0} \frac{1-cos^3x}{sin^2x} }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \frac{1-(cos^2x)cosx}{sin^2x} }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \frac{1-(1-sin^2x)cosx}{sin^2x} }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \frac{1-cosx+sin^2xcosx}{sin^2x} }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \left ( \frac{1-cosx}{sin^2x}+\frac{sin^2xcosx}{sin^2x} \right ) }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \left ( \frac{1-cosx}{sin^2x}\times\frac{1+cosx}{1+cosx}+cosx \right ) }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \left ( \frac{1-cos^2x}{sin^2x(1+cosx)}+cosx \right ) }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \left ( \frac{sin^2x}{sin^2x(1+cosx)}+cosx \right ) }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \left ( \frac{1}{1+cosx}+cosx \right ) }[/tex]
[tex]\displaystyle{=\frac{1}{1+cos0}+cos0 }[/tex]
[tex]\displaystyle{=\frac{1}{1+1}+1 }[/tex]
[tex]\displaystyle{=\frac{1}{2}+1 }[/tex]
[tex]\displaystyle{=\frac{3}{2}}[/tex]
.
> Menggunakan Aturan L'hospital :
[tex]\displaystyle{ \lim_{x \to 0} \frac{1-cos^3x}{sin^2x} }[/tex]
[tex]\displaystyle{=\frac{1-cos^30}{sin^20} }[/tex]
[tex]\displaystyle{=\frac{0}{0} }[/tex]
Karena substitusi langsung hasilnya bentuk tak tentu, bisa kita gunakan aturan l'hospital.
[tex]\displaystyle{ \lim_{x \to 0} \frac{1-cos^3x}{sin^2x} }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \frac{\frac{d}{dx}\left ( 1-cos^3x \right )}{\frac{d}{dx}\left ( sin^2x \right )} }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \frac{-3cos^2x(-sinx)}{2sinxcosx} }[/tex]
[tex]\displaystyle{=\lim_{x \to 0} \frac{3cosx}{2} }[/tex]
[tex]\displaystyle{=\frac{3cos0}{2} }[/tex]
[tex]\displaystyle{=\frac{3}{2} }[/tex]
.
KESIMPULAN
Hasil dari [tex]\displaystyle{ \lim_{x \to 0} \frac{1-cos^3x}{sin^2x} }[/tex] adalah [tex]\displaystyle{\boldsymbol{e.~\frac{3}{2}}}[/tex].
.
PELAJARI LEBIH LANJUT
.
DETAIL JAWABAN
Kelas : 11
Mapel: Matematika
Bab : Limit Fungsi
Kode Kategorisasi: 11.2.8