[tex]\begin{aligned} \sf \lim_{x \to \frac{\pi}{2} } \frac{\pi(\pi - 2x) \: tan \: (x - \frac{\pi}{2}) }{2(x - \pi) \: {cos}^{2} \: x} \end{aligned}[/tex]
[tex]\begin{aligned} \sf &= \sf \lim_{x \to \frac{\pi}{2} } \bigg( \frac{2\pi}{2(x - \pi)}\bigg)\bigg( \frac{( \frac{\pi}{2} - x) \: tan - ( \frac{\pi}{2} - x) }{ {sin}^{2}( \frac{\pi}{2} - x) } \bigg) \\ \sf &= \sf \bigg( \frac{2\pi}{2( - \frac{\pi}{2}) }\bigg)\bigg( \frac{(1)( - 1)}{ {1}^{2} } \bigg)\\ \sf &= \sf \bigg( \frac{2\pi}{ - \frac{ 2\pi}{2} } \bigg) \bigg( \frac{ - 1}{1} \bigg) \\ \sf &= \sf ( - 2)( - 1)\\ \sf &= \sf 2\end{aligned} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
[tex]\begin{aligned} \sf \lim_{x \to \frac{\pi}{2} } \frac{\pi(\pi - 2x) \: tan \: (x - \frac{\pi}{2}) }{2(x - \pi) \: {cos}^{2} \: x} \end{aligned}[/tex]
[tex]\begin{aligned} \sf &= \sf \lim_{x \to \frac{\pi}{2} } \bigg( \frac{2\pi}{2(x - \pi)}\bigg)\bigg( \frac{( \frac{\pi}{2} - x) \: tan - ( \frac{\pi}{2} - x) }{ {sin}^{2}( \frac{\pi}{2} - x) } \bigg) \\ \sf &= \sf \bigg( \frac{2\pi}{2( - \frac{\pi}{2}) }\bigg)\bigg( \frac{(1)( - 1)}{ {1}^{2} } \bigg)\\ \sf &= \sf \bigg( \frac{2\pi}{ - \frac{ 2\pi}{2} } \bigg) \bigg( \frac{ - 1}{1} \bigg) \\ \sf &= \sf ( - 2)( - 1)\\ \sf &= \sf 2\end{aligned} [/tex]