1-tan^2x/1+tan^2x
=1-(sec^2x-1)/1+(sec^2x-1)
=2-sec^2x/sec^2x
=2/sec^2x-1
=2/1/cos^2x -1
=2cos^2x-1
(Terbukti)
Penjelasan dengan langkah-langkah:
1 - tan²x/ 1 + tan²x =
1 - (sin²x/cos²x) / (1 + (sin²x /cos²x))
((Cos²x - sin²x)/cos²x) / ((cos²x + sin²x)/cos²x)
= (cos²x - sin²x) / (cos²x + sin²x)
= cos²x - sin²x / 1
= cos²x - ( 1 - cos²x)
= cos²x + cos²x -1
= 2 cos²x - 1 ✔
Catatan :
Identitas trigonometri :
cos²x + sin²x = 1
Sin²x = 1 - cos²x
Tan²x = sin²x / cos²x
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
1-tan^2x/1+tan^2x
=1-(sec^2x-1)/1+(sec^2x-1)
=2-sec^2x/sec^2x
=2/sec^2x-1
=2/1/cos^2x -1
=2cos^2x-1
(Terbukti)
Penjelasan dengan langkah-langkah:
1 - tan²x/ 1 + tan²x =
1 - (sin²x/cos²x) / (1 + (sin²x /cos²x))
((Cos²x - sin²x)/cos²x) / ((cos²x + sin²x)/cos²x)
= (cos²x - sin²x) / (cos²x + sin²x)
= cos²x - sin²x / 1
= cos²x - ( 1 - cos²x)
= cos²x + cos²x -1
= 2 cos²x - 1 ✔
Catatan :
Identitas trigonometri :
cos²x + sin²x = 1
Sin²x = 1 - cos²x
Tan²x = sin²x / cos²x