Sehingga,
[tex]A. \: (fog)(x) = f(g(x))[/tex]
[tex]B. \: (gof)(x) = g(f(x))[/tex]
[tex]C. \: (fog)( - 2) = f(g( - 2))[/tex]
[tex] \begin{aligned} &\text{Diketahui} : & \!\!\!\! f(x) &=x^2 - 5x \\ && \!\!\!\! g(x) &= 2x+3 \end{aligned} [/tex]
[tex] \text{a. Tentukan } (f\circ g)(x). [/tex]
[tex]\quad \begin{aligned} (f\circ g)(x) &= f(g(x)) \\ &= f(2x+3) \\ &= (2x+3)^2-5(2x+3) \\ &= 4x^2+12x+9-10x-15 \\ &= 4x^2+2x-6 \end{aligned} [/tex]
[tex]\text{b. Tentukan } (g\circ f)(x). [/tex]
[tex] \quad \begin{aligned} (g\circ f)(x) &= g(f(x)) \\ &= g(x^2-5x) \\ &= 2(x^2-5x)+3 \\ &= 2x^2-10x+3 \end{aligned} [/tex]
[tex]\text{c. Tentukan } (f\circ g)(-2). [/tex]
[tex]\quad \begin{aligned} (f\circ g)(-2) &= 4(-2)^2+2(-2)-6 \\ &= 4(4)-4-6 \\ &= 16-10 \\ &= 6 \end{aligned} [/tex]
[tex] \colorbox{Orange}{\color{white}{\#ForTheGreaterGood}} [/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Sehingga,
[tex]A. \: (fog)(x) = f(g(x))[/tex]
[tex]B. \: (gof)(x) = g(f(x))[/tex]
[tex]C. \: (fog)( - 2) = f(g( - 2))[/tex]
Komposisi Fungsi
[tex] \begin{aligned} &\text{Diketahui} : & \!\!\!\! f(x) &=x^2 - 5x \\ && \!\!\!\! g(x) &= 2x+3 \end{aligned} [/tex]
[tex] \text{a. Tentukan } (f\circ g)(x). [/tex]
[tex]\quad \begin{aligned} (f\circ g)(x) &= f(g(x)) \\ &= f(2x+3) \\ &= (2x+3)^2-5(2x+3) \\ &= 4x^2+12x+9-10x-15 \\ &= 4x^2+2x-6 \end{aligned} [/tex]
[tex]\text{b. Tentukan } (g\circ f)(x). [/tex]
[tex] \quad \begin{aligned} (g\circ f)(x) &= g(f(x)) \\ &= g(x^2-5x) \\ &= 2(x^2-5x)+3 \\ &= 2x^2-10x+3 \end{aligned} [/tex]
[tex]\text{c. Tentukan } (f\circ g)(-2). [/tex]
[tex]\quad \begin{aligned} (f\circ g)(-2) &= 4(-2)^2+2(-2)-6 \\ &= 4(4)-4-6 \\ &= 16-10 \\ &= 6 \end{aligned} [/tex]
[tex] \colorbox{Orange}{\color{white}{\#ForTheGreaterGood}} [/tex]