Odpowiedź:
5/130
a) [tex]\frac{x*(3 x - 4)}{x - 3} = 0[/tex] Założenie: x ≠ 3
x*(3 x - 4) = 0
x = 0 lub 3 x - 4 = 0
x = 0 3 x = 4
x = 0 lub x = [tex]\frac{4}{3}[/tex]
===============
b ) [tex]\frac{(x - 4)*(5 x + 2)}{2x + 5} = 0[/tex] Zał. 2 x + 5 ≠ 0 ⇒ x ≠ - 2,5
x - 4 = 0 lub 5 x +2 = 0
x = 4 5 x = - 2
x =4 x = - 0,4
======================
1/133
d) [tex]\frac{- 6 x}{2 x - 5} = 2[/tex] / * ( 2 x - 5 ) 2 x - 5 ≠ 0 ⇒ x ≠ 2,5
- 6 x = 4 x - 10
- 6 x - 4 x = 10
- 10 x = 10 / : ( - 10)
x = - 1
======
2/138
a ) I x - 5 I = 1
x - 5 = -1 lub x - 5 = 1
x = - 1 + 5 x = 1 + 5
x = 4 lub x = 6
d ) I x + 9 I = 2
x + 9 = - 2 lub x + 9 = 2
x = - 2 - 9 x = 2 - 9
x = - 11 lub x = - 7
========================
3/141
c ) I 2 x + 4 I < 8
2 x + 4 > - 8 i 2 x + 4 < 8
2 x > - 12 2 x < 4
x > -6 x < 2
x ∈ ( - 6 ; 2 )
e ) I 6 - 3 x I < 6
6 - 3 x > - 6 i 6 - 3 x < 6
- 3 x > - 6 - 6 -3 x < 6 - 6
-3 x > - 12 / : ( - 3) -3 x < 0 / : ( - 3)
x < 4 x > 0
x ∈ ( 0 ; 4 )
============
2/ 141
c ) I x + 2 I ≥ 6
x + 2 ≤ - 6 lub x + 2 ≥ 6
x ≤ - 6 - 2 x ≥ 6 - 2
x ≤ - 8 x ≥ 4
x ∈ ( - ∞ ; - 8 > ∪ < 4 ; + ∞ )
=========================
e ) I 3 + x I < 6
3 + x > - 6 i 3 + x < 6
x > - 9 x < 3
x ∈ ( - 9 ; 3 )
=============
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
5/130
a) [tex]\frac{x*(3 x - 4)}{x - 3} = 0[/tex] Założenie: x ≠ 3
x*(3 x - 4) = 0
x = 0 lub 3 x - 4 = 0
x = 0 3 x = 4
x = 0 lub x = [tex]\frac{4}{3}[/tex]
===============
b ) [tex]\frac{(x - 4)*(5 x + 2)}{2x + 5} = 0[/tex] Zał. 2 x + 5 ≠ 0 ⇒ x ≠ - 2,5
x - 4 = 0 lub 5 x +2 = 0
x = 4 5 x = - 2
x =4 x = - 0,4
======================
1/133
d) [tex]\frac{- 6 x}{2 x - 5} = 2[/tex] / * ( 2 x - 5 ) 2 x - 5 ≠ 0 ⇒ x ≠ 2,5
- 6 x = 4 x - 10
- 6 x - 4 x = 10
- 10 x = 10 / : ( - 10)
x = - 1
======
2/138
a ) I x - 5 I = 1
x - 5 = -1 lub x - 5 = 1
x = - 1 + 5 x = 1 + 5
x = 4 lub x = 6
======================
d ) I x + 9 I = 2
x + 9 = - 2 lub x + 9 = 2
x = - 2 - 9 x = 2 - 9
x = - 11 lub x = - 7
========================
3/141
c ) I 2 x + 4 I < 8
2 x + 4 > - 8 i 2 x + 4 < 8
2 x > - 12 2 x < 4
x > -6 x < 2
x ∈ ( - 6 ; 2 )
===============
e ) I 6 - 3 x I < 6
6 - 3 x > - 6 i 6 - 3 x < 6
- 3 x > - 6 - 6 -3 x < 6 - 6
-3 x > - 12 / : ( - 3) -3 x < 0 / : ( - 3)
x < 4 x > 0
x ∈ ( 0 ; 4 )
============
2/ 141
c ) I x + 2 I ≥ 6
x + 2 ≤ - 6 lub x + 2 ≥ 6
x ≤ - 6 - 2 x ≥ 6 - 2
x ≤ - 8 x ≥ 4
x ∈ ( - ∞ ; - 8 > ∪ < 4 ; + ∞ )
=========================
e ) I 3 + x I < 6
3 + x > - 6 i 3 + x < 6
x > - 9 x < 3
x ∈ ( - 9 ; 3 )
=============
Szczegółowe wyjaśnienie: