Odpowiedź:
Niech I ∡ BAC I = α , I ∡ ABC I = β
a = I BC I , b = I AC I , c = I AB I
2 R = 16,25
[tex]\frac{sin \alpha }{sin \beta } = \frac{15}{13}[/tex] a = I BC I = 15
więc
z tw. sinusów [tex]\frac{15}{sin \alpha } = \frac{b}{sin \beta }[/tex]
b*sin α = 15*sin β
b = 15*[tex]\frac{sin \beta }{sin \alpha } = 15*\frac{13}{15} = 13[/tex]
----------------------------------------------
oraz [tex]\frac{15}{sin \alpha } =2 R = 16,25[/tex]
sin α = [tex]\frac{15}{16,25} = \frac{3}{3,25} = \frac{12}{13}[/tex]
cos²α =1 - sin²α = 1 - [tex]\frac{144}{169} = \frac{25}{169}[/tex]
cos α = - [tex]\frac{5}{13}[/tex]
Z tw. kosinusów
a² = b² + c² - 2 b*c*cos α
15² = 13² + c² - 2*13*c* ( - [tex]\frac{5}{13}[/tex] ) = 169 + c² + 10 c
c² + 10 c = 225 - 169 = 56
c² + 10 c - 56 = 0
Δ = 100 - 4*1*(- 56) = 100 + 224 = 324
√Δ = 18
c = [tex]\frac{- 10 +18}{2*1} = 4[/tex]
---------------------------
Mamy : a = 15, b = 13, c = 4
P[tex]_{ABC}[/tex] = 0,5*b*c*sin α = 0,5*13*4*[tex]\frac{12}{13}[/tex] = 24 j²
p = ( a + b + c) : 2 = ( 15 + 13 + 4 ) : 2 = 32 : 2 = 16
zatem korzystając z wzoru
P = p*r otrzymujemy
24 = 16*r
r = 24 : 16 = 1,5
Odp. P = π*r² = π*1,5² = 2,25 π
================================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
Niech I ∡ BAC I = α , I ∡ ABC I = β
a = I BC I , b = I AC I , c = I AB I
2 R = 16,25
[tex]\frac{sin \alpha }{sin \beta } = \frac{15}{13}[/tex] a = I BC I = 15
więc
z tw. sinusów [tex]\frac{15}{sin \alpha } = \frac{b}{sin \beta }[/tex]
b*sin α = 15*sin β
b = 15*[tex]\frac{sin \beta }{sin \alpha } = 15*\frac{13}{15} = 13[/tex]
----------------------------------------------
oraz [tex]\frac{15}{sin \alpha } =2 R = 16,25[/tex]
sin α = [tex]\frac{15}{16,25} = \frac{3}{3,25} = \frac{12}{13}[/tex]
cos²α =1 - sin²α = 1 - [tex]\frac{144}{169} = \frac{25}{169}[/tex]
cos α = - [tex]\frac{5}{13}[/tex]
Z tw. kosinusów
a² = b² + c² - 2 b*c*cos α
15² = 13² + c² - 2*13*c* ( - [tex]\frac{5}{13}[/tex] ) = 169 + c² + 10 c
c² + 10 c = 225 - 169 = 56
c² + 10 c - 56 = 0
Δ = 100 - 4*1*(- 56) = 100 + 224 = 324
√Δ = 18
c = [tex]\frac{- 10 +18}{2*1} = 4[/tex]
---------------------------
Mamy : a = 15, b = 13, c = 4
P[tex]_{ABC}[/tex] = 0,5*b*c*sin α = 0,5*13*4*[tex]\frac{12}{13}[/tex] = 24 j²
p = ( a + b + c) : 2 = ( 15 + 13 + 4 ) : 2 = 32 : 2 = 16
zatem korzystając z wzoru
P = p*r otrzymujemy
24 = 16*r
r = 24 : 16 = 1,5
Odp. P = π*r² = π*1,5² = 2,25 π
================================
Szczegółowe wyjaśnienie: