[tex]\text{tg}\alpha=\frac{9}{11}\\\\\frac{\sin(90^\circ-\alpha)-\sin(180^\circ-\alpha)}{\cos\alpha}=?[/tex]
Kąt jest ostry, więc ze wzorów redukcyjnych mamy:
[tex]\sin(90^\circ-\alpha)=\cos\alpha\\\\\sin(180^\circ-\alpha)=\sin\alpha[/tex]
Z powyższych równości oraz ze wzoru [tex]\text{tg}\alpha=\frac{\sin\alpha}{\cos\alpha}[/tex] mamy:
[tex]\frac{\sin(90^\circ-\alpha)-\sin(180^\circ-\alpha)}{\cos\alpha}=\frac{\cos\alpha-\sin\alpha}{\cos\alpha}=\frac{\cos\alpha}{\cos\alpha}-\frac{\sin\alpha}{\cos\alpha}=1-\text{tg}\alpha=1-\frac{9}{11}=\frac{2}{11}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
[tex]\text{tg}\alpha=\frac{9}{11}\\\\\frac{\sin(90^\circ-\alpha)-\sin(180^\circ-\alpha)}{\cos\alpha}=?[/tex]
Kąt jest ostry, więc ze wzorów redukcyjnych mamy:
[tex]\sin(90^\circ-\alpha)=\cos\alpha\\\\\sin(180^\circ-\alpha)=\sin\alpha[/tex]
Z powyższych równości oraz ze wzoru [tex]\text{tg}\alpha=\frac{\sin\alpha}{\cos\alpha}[/tex] mamy:
[tex]\frac{\sin(90^\circ-\alpha)-\sin(180^\circ-\alpha)}{\cos\alpha}=\frac{\cos\alpha-\sin\alpha}{\cos\alpha}=\frac{\cos\alpha}{\cos\alpha}-\frac{\sin\alpha}{\cos\alpha}=1-\text{tg}\alpha=1-\frac{9}{11}=\frac{2}{11}[/tex]