Szczegółowe wyjaśnienie:
Korzystamy z własności potęgowania.
[tex]a^{n}\times b^{n} =(a\times b)^{n}\\\\a^{n}: b^{n}=(a:b)^{n}[/tex]
[tex](2,5)^{3}:0,5^{3} =(2,5:0,5)^{3} = (25:5)^{3} = 5^{3} = \boxed{125}[/tex]
[tex](7\frac{1}{5})^{3}\times(-\frac{5}{18})^{3}\times(-\frac{8}{10})^{3} =[\frac{36}{5}\times(-\frac{5}{18})\times(-\frac{4}{5})]^{3} =[-2\times(-\frac{4}{5})]^{3}=(\frac{8}{5})^{3}=\\\\=\frac{8^{3}}{5^{3}} = \frac{512}{125} = \boxed{4\frac{12}{125}}[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Szczegółowe wyjaśnienie:
Korzystamy z własności potęgowania.
[tex]a^{n}\times b^{n} =(a\times b)^{n}\\\\a^{n}: b^{n}=(a:b)^{n}[/tex]
[tex](2,5)^{3}:0,5^{3} =(2,5:0,5)^{3} = (25:5)^{3} = 5^{3} = \boxed{125}[/tex]
[tex](7\frac{1}{5})^{3}\times(-\frac{5}{18})^{3}\times(-\frac{8}{10})^{3} =[\frac{36}{5}\times(-\frac{5}{18})\times(-\frac{4}{5})]^{3} =[-2\times(-\frac{4}{5})]^{3}=(\frac{8}{5})^{3}=\\\\=\frac{8^{3}}{5^{3}} = \frac{512}{125} = \boxed{4\frac{12}{125}}[/tex]