" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
y = x^(lnx)
ln(y) = ln(x^ln(x))
ln(y) = lnx.lnx
ln y = (ln x)^2
(1/y)(dy/dx) = 2(ln x).(1/x)
dy/dx = 2y(ln x)/x
y' = 2(x^(lnx).lnx)/x
y' = 2(x^(lnx - 1)).lnx
===
2)
y = 2e^(-2x) - e^(-4x)
y' = -4e^(-2x) + 4e^(-4x)
y' = 4(e^(-4x) - e^(-2x))
y' = 4(e^(-2x).e^(-2x) - e^(-2x))
y' = 4(e^(-2x)(e^(-2x) - 1))
y' = 0
maka,
e^(-2x) = 0
ln(e^(-2x)) = ln 0
-2x = ln 0
x = (ln 0) / 2
x = lim a → 0 (ln a) / 2
e^(-2x) - 1 = 0
e^(-2x) = 1
ln(e^(-2x)) = ln 1
-2x = 0
x = 0
anggap x terdefinisi di real, maka x = 0