Odpowiedź:
P = ( - 1, 4 ), więc x = - 1, y = 4
r² = x² + y² = 1 + 16 = 17
r = [tex]\sqrt{17}[/tex]
[tex]sin \alpha = \frac{y}{r} = \frac{4}{\sqrt{17} } = \frac{4\sqrt{17} }{17}[/tex]
[tex]cos \alpha = \frac{x}{r} = \frac{-1}{\sqrt{17} } = \frac{- \sqrt{17} }{17}[/tex]
[tex]tg \alpha = \frac{y}{x} = \frac{4}{- 1} = - 4[/tex]
[tex]ctg \alpha = \frac{x}{y} = - \frac{1}{4}[/tex]
======================
Szczegółowe wyjaśnienie:
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
P = ( - 1, 4 ), więc x = - 1, y = 4
r² = x² + y² = 1 + 16 = 17
r = [tex]\sqrt{17}[/tex]
[tex]sin \alpha = \frac{y}{r} = \frac{4}{\sqrt{17} } = \frac{4\sqrt{17} }{17}[/tex]
[tex]cos \alpha = \frac{x}{r} = \frac{-1}{\sqrt{17} } = \frac{- \sqrt{17} }{17}[/tex]
[tex]tg \alpha = \frac{y}{x} = \frac{4}{- 1} = - 4[/tex]
[tex]ctg \alpha = \frac{x}{y} = - \frac{1}{4}[/tex]
======================
Szczegółowe wyjaśnienie: