Jawaban:
Nomor 3
�
sin
(
)
=
sin(a)
a
sin(b)
b
10
30
°
45
sin(30°)
sin(45°)
1
2
20
20=
×
b=20×
cm
b=10
Nomor 4
5
cos
+
60
16
y=5cos(x+60°)+16
Maks :
= |k| + 16
= |5| + 16
= 21
—Karena nilai maks sudah diketahui, sekarang cari nilai x yang memenuhi interval tersebut.
21
5cos(x+60°)+16=21
5cos(x+60°)=5
cos(x+60°)=1
0
cos(x+60°)=cos(0°)
x+60°=0°
−
x=0°−60°
360
x=360°−60°
300
,
memenuhi
syarat
≤
x=300°,memenuhi syarat0°≤x≤360°
Jadi, fungsi trigonometri tersebut memiliki nilai maksimum saat x = 300°.
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Jawaban:
Nomor 3
�
sin
(
�
)
=
�
sin
(
�
)
sin(a)
a
=
sin(b)
b
10
sin
(
30
°
)
=
�
sin
(
45
°
)
sin(30°)
10
=
sin(45°)
b
10
1
2
=
�
1
2
2
2
1
10
=
2
1
2
b
20
=
�
1
2
2
20=
2
1
2
b
�
=
20
×
1
2
2
b=20×
2
1
2
�
=
10
2
cm
b=10
2
cm
Nomor 4
�
=
5
cos
(
�
+
60
°
)
+
16
y=5cos(x+60°)+16
Maks :
= |k| + 16
= |5| + 16
= 21
—Karena nilai maks sudah diketahui, sekarang cari nilai x yang memenuhi interval tersebut.
5
cos
(
�
+
60
°
)
+
16
=
21
5cos(x+60°)+16=21
5
cos
(
�
+
60
°
)
=
5
5cos(x+60°)=5
cos
(
�
+
60
°
)
=
1
cos(x+60°)=1
cos
(
�
+
60
°
)
=
cos
(
0
°
)
cos(x+60°)=cos(0°)
�
+
60
°
=
0
°
x+60°=0°
�
=
0
°
−
60
°
x=0°−60°
�
=
360
°
−
60
°
x=360°−60°
�
=
300
°
,
memenuhi
syarat
0
°
≤
�
≤
360
°
x=300°,memenuhi syarat0°≤x≤360°
Jadi, fungsi trigonometri tersebut memiliki nilai maksimum saat x = 300°.