" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Aplicas .
Productos Notables
(a - b)² =
a² - 2ab + b²
(3a² - 2b)² =
(3a²)² - 2(3a²)(2b) + (2b)² =
3²(a²)² - 12a²b + 2²b² =
9a⁴ - 12a²b + 4b²
(2 - z³)² =
2² - 2 (2)(z³) + (z³)² =
4 - 4z³ + z⁶
Aplicas productos notables.
La suma por la diferencia de dos cantidades.
(a + b)(a - b) =
a² - b²
(5x - 6)(5x + 6) =
(5x)² - 6² =
5²x² - 36
25x² - 36
(6m² + n)(6m² - n) =
(6m²)² - n² =
6²(m²)² - n² =
36m⁴ - n²
Aplicas.
Productos Notables.
(a - b)³ = a³ - 3a²b + 3ab² - b³
(a + b)³ = a³ + 3a³b + 3ab³ + b³
(a² - 2)³ =
(a²)³ - 3(a²)²(2) + 3a(2)² - 2³ =
a⁶ - 6a⁴ + 3a² * 4 - 8 =
a⁶ - 6a⁴ + 12a² - 8
(3y + 5)³ =
(3y)³ + 3(3y)²(5) + 3(3y)(5)² + 5³ =
3³y³ + 15(3²y²) + 9y(25) + 125 =
27y³ + 15(9y²) + 225y + 125 =
27y³ + 135y² + 225y + 125
(10 - y)³ =
10³ - 3(10)²y + 3(10)y² - y³ =
1000 - 3y(100) + 30y² - y³
1000 - 300y + 30y² - y³
Aplicas.
a³ + b³ ⇔ (a + b)(a² - ab + b²)
(x + 4)(x² - 4x + 16) =
(x + 4)(x² - 4x + 4²) =
x³ + 4³ =
x³ + 64
(x² + 5y)(x⁴ - 5x²y + 25y²)
(x² + 5y)(x⁴ - 5x²y + 5²y²)
(x²)³ + (5y)³ =
x⁶ + 5³y³ =
x⁶ + 125y³
Aplicas.
a³ - b³ ⇔(a - b)(a² + ab + b²)
(x - 5)(x² + 5x + 25) =
(x - 5)(x² + 5x + 5²) =
x³ - 5³ =
x³ - 125