Wyrażenia algebraiczne.
Skracanie ułamków i założenia.
Załącznik niżej :)
x²-4\x²+4x+4=(x-2)(x+2)\(x+2)²=x-2 \ x+2
b)
9+6x+x² \ x²-9=x²+6x+9 \ x²-9=(x+3)² \ (x-3)(x+3)=x+3 \(x-3)
c)
x²-5x \ (x-5)²=x(x-5) \ (x-5)² skracamy =x+3 \ x-3
d)
6x-2 \ 9x²-6x+1=2(3x-1) \ (3x-1)²=2 \ 3x-1
e)
(x-1)²+4x \ x²-1=(x-1)²+4x \ (x-1)(x+1) skracamy =x-1+4x \x+1=5x-1 \ x+1
f)
(x+4)²-16x \ (x-4)²=x²+8x+16-16x \ x²-8x+16=x²-8x+16 \ x²-8x+16 skracamy =1
3,82,
(x+1)²x-4(x+1) \ (x+2)(x²+2x+1)=(x²+2x+1)x-4x-4 \ (x+2)(x²+2x+1) skracamy(x²+2x+1)=
=x-4x-4 \ x+2=-3x-4 \ x+2
x²(3-x)-9(3-x) \ (x-3)²= 3x²-x³-27+9x \ (x-3)²=-x³+3x²+9x-27 \ (x-3)²=
-x³+3x²+9x-27
-x²(x-3)+9(x-3)=0
(x-3)(-x²+9)=0
(x-3)(-x+3)(-x-3)=0
=(x-3)-(x+3)(x-3) \ (x-3)² skracamy (x-3) =-x+3
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
x²-4\x²+4x+4=(x-2)(x+2)\(x+2)²=x-2 \ x+2
b)
9+6x+x² \ x²-9=x²+6x+9 \ x²-9=(x+3)² \ (x-3)(x+3)=x+3 \(x-3)
c)
x²-5x \ (x-5)²=x(x-5) \ (x-5)² skracamy =x+3 \ x-3
d)
6x-2 \ 9x²-6x+1=2(3x-1) \ (3x-1)²=2 \ 3x-1
e)
(x-1)²+4x \ x²-1=(x-1)²+4x \ (x-1)(x+1) skracamy =x-1+4x \x+1=5x-1 \ x+1
f)
(x+4)²-16x \ (x-4)²=x²+8x+16-16x \ x²-8x+16=x²-8x+16 \ x²-8x+16 skracamy =1
3,82,
(x+1)²x-4(x+1) \ (x+2)(x²+2x+1)=(x²+2x+1)x-4x-4 \ (x+2)(x²+2x+1) skracamy(x²+2x+1)=
=x-4x-4 \ x+2=-3x-4 \ x+2
x²(3-x)-9(3-x) \ (x-3)²= 3x²-x³-27+9x \ (x-3)²=-x³+3x²+9x-27 \ (x-3)²=
-x³+3x²+9x-27
-x²(x-3)+9(x-3)=0
(x-3)(-x²+9)=0
(x-3)(-x+3)(-x-3)=0
=(x-3)-(x+3)(x-3) \ (x-3)² skracamy (x-3) =-x+3