Una cuerda de un péndulo cónico mide 50 cm de largo y la masa de la bola es de 0.25 kg. Encuentra el ángulo entre la cuerda y la horizontal cuando la tensión en la cuerda es seis veces el peso de la bola. En esas condiciones ¿cuál es el período del péndulo?
La cuerda forma un ángulo Ф con la horizontal
Las componentes verticales de las fuerzas dan resultante nula.
6 m g senФ - m g = 0; por lo tanto senФ = 1/6
Ф ≅ 9,6°
La componente horizontal de la tensión de la cuerda genera la fuerza centrípeta sobre la masa pendular.
Fc = m ω² L cosФ = 6 m g cosФ
Luego ω² = 6 g / L = 6 . 9,8 m/s² / 0,5 m = 117,6 /s²
Por otro lado es T = 2 π / ω
T = 2 π / √(117,6 /s²)
T = 0,579 s
Saludos.