Tres puntos A, B y C están unidos por carreteras rectas y llanas. La distancia AB es de 6 Km, la de BC es de 9 Km, el ángulo que forman AB y BC es de 120º. ¿Cuál es la distancia de A a C?. Calcular los otros dos ángulos. NECESITO EL PROCEDIMIENTO
¡Notificar abuso!
Solución: Debes aplicar la ley de los cosenos para hallar la distancia AC, así:
=> (AC)^2 = (AB)^+ (BC)^2 - (2(AB)(BC)*Cos B)
=> (AC)^2 = (6)^2 + (9)^2 - (2*6*9*Cos 120º)
=> (AC)^= 36 + 81 - (-54)
=> (AC)^2 =117 + 54 .................___ => AC = V(171)
=> AC = 13.0766
=> Aproximando tenemos AC = 13.08
Para hallar los ángulos se procede de la siguiente manera también utilizando la ley de los cosenos, así:
=> Cos(A) = [ 6^2 + 13.08^2 - 9^2] / [ 2*6*13.08]
=> Cos(A) = 126.0864 / 156.96
=> Cos (A) = 0.803302752
=> A = Cos^(-1) (0.803302752)
=> A = 36.5º
=> A = 36º aproximando
Para hallar el ÁNGULO "C" se sabe que la suma de sus ángulos interiores es 180º, entonces tenemos:
=> A + B + C = 180º
=> 36º + 120º + C = 180º
=> 156º + C = 180º
=> C = 180º - 156º
=> C = 24º
Respuesta: La distancia AC = 13.08 km y sus ángulos son A= 36º y C= 24º
Debes aplicar la ley de los cosenos para hallar la distancia AC, así:
=> (AC)^2 = (AB)^+ (BC)^2 - (2(AB)(BC)*Cos B)
=> (AC)^2 = (6)^2 + (9)^2 - (2*6*9*Cos 120º)
=> (AC)^= 36 + 81 - (-54)
=> (AC)^2 =117 + 54
.................___
=> AC = V(171)
=> AC = 13.0766
=> Aproximando tenemos AC = 13.08
Para hallar los ángulos se procede de la siguiente manera también utilizando la
ley de los cosenos, así:
=> Cos(A) = [ 6^2 + 13.08^2 - 9^2] / [ 2*6*13.08]
=> Cos(A) = 126.0864 / 156.96
=> Cos (A) = 0.803302752
=> A = Cos^(-1) (0.803302752)
=> A = 36.5º
=> A = 36º aproximando
Para hallar el ÁNGULO "C" se sabe que la suma de sus ángulos interiores es 180º, entonces tenemos:
=> A + B + C = 180º
=> 36º + 120º + C = 180º
=> 156º + C = 180º
=> C = 180º - 156º
=> C = 24º
Respuesta: La distancia AC = 13.08 km y sus ángulos son A= 36º y C= 24º
Suerte. Nose126