2log3 (x+1)-log3 y-log2 8=log3 (x+1)²-log3 y-log2 2³=log3 (x+1)²/y-2log2 2==log3 (x++1)²/y-2=log3 (x+1)²/y- 2log3 3=log3 (x+1)²/y-log3 3²=log3 (x+1)²/(3²·y)=1/9log3 (x+1)²/y , dla (x+1 >0 ∧ y > 0) ⇔ ( x>-1 ∧ y > 0 )
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
2log3 (x+1)-log3 y-log2 8=log3 (x+1)²-log3 y-log2 2³=log3 (x+1)²/y-2log2 2==log3 (x++1)²/y-2=log3 (x+1)²/y- 2log3 3=log3 (x+1)²/y-log3 3²=log3 (x+1)²/(3²·y)=1/9log3 (x+1)²/y , dla (x+1 >0 ∧ y > 0) ⇔ ( x>-1 ∧ y > 0 )