rozwiąż równanie , tylko nie wiem jak to zapisac bo to bedzie symbol newtona
( n - na górze i n-3 na dole ) = n - 2 . Mam nadzieję ze ktoś zrozumie ten zapis
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
( n nad n-3 ) = n !/ [ (n -3) ! * ( n - ( n-3)) !] = n !/[ n-3) ! * 3 !] =
= [ n-2)*(n-1)*n]/6
czyli
[ (n-2)*(n-1) *n]/ 6 = n -2 / * 6
(n-2)*(n -1)*n = 6*( n -2)
(n -2)*( n-1)*n - 6*(n-2) = 0
(n -2)*[ (n-1)*n - 6] = 0
( n -2)*[n^2 - n - 6 ] = 0
n -2 = 0 lub n^2 - n - 6 = 0
n = 2 - odpada, bo 2 - 3 = - 1 < 0
n^2 - n - 6 = 0
delta = 1 -4*1*(-6) = 1 + 24 = 25
n = [ 1 - 5]/2 = - 4/2 = - 2 < 0 - odpada
lub n = [ 1 + 5]/2 = 6/2 = 3
Odp. n = 3
=============
spr.
( 3 nad 3 - 3) = ( 3 nad 0 ) = 1 = 3 - 2
-----------------------------------------------------------------