Rozwiąż podane równanie metodą rozkładu na czynniki x2=3
2x2-5=0
x2+10x+25=0
x2+3=2^3x
x^2 = 3
x^2 - 3 = 0
( x - p(3))*( x + p(3)) = 0
x = p(3) lub x = - p(3)
======================
p(3) - pierwiastek kwadratowy z 3
-----------------------------------------------------
2 x^2 - 5 = 0 / : 2
x^2 - 5/2 = 0
( x - p(5/2))*( x + p(5/2)) = 0
x = p(5/2) lub x = - p(5/2)
==========================
x^2 + 10 x + 25 = 0
( x + 5)^2 = 0
x + 5 = 0
x = - 5
===========
x^2 +3 = 8 x
x^2 - 8 x + 3 = 0
delta = ( -8)^2 - 4*1*3 = 64 - 12 = 52 = 4*13
p (delty) = 2 p(13)
x1 = [ 8 - 2 p(13)]/2 = 4 - p(13
x2 = [ 8 + 2 p(13)]/2 = 4 + p(13)
=============================
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
x^2 = 3
x^2 - 3 = 0
( x - p(3))*( x + p(3)) = 0
x = p(3) lub x = - p(3)
======================
p(3) - pierwiastek kwadratowy z 3
-----------------------------------------------------
2 x^2 - 5 = 0 / : 2
x^2 - 5/2 = 0
( x - p(5/2))*( x + p(5/2)) = 0
x = p(5/2) lub x = - p(5/2)
==========================
x^2 + 10 x + 25 = 0
( x + 5)^2 = 0
x + 5 = 0
x = - 5
===========
x^2 +3 = 8 x
x^2 - 8 x + 3 = 0
delta = ( -8)^2 - 4*1*3 = 64 - 12 = 52 = 4*13
p (delty) = 2 p(13)
x1 = [ 8 - 2 p(13)]/2 = 4 - p(13
x2 = [ 8 + 2 p(13)]/2 = 4 + p(13)
=============================