1.- Un ebanista quiere cortar una plancha de madera de 256 cm de largo y 96 cm de ancho, en cuadrados lo más grandes posible. a) ¿Cuál debe ser la longitud del lado de cada cuadrado? b) ¿Cuántos cuadrados se obtienen de la plancha de madera? 2.- Un viajante va a Sevilla cada 18 días, otro va a Sevilla cada 15 días y un tercero va a Sevilla cada 8 días. Hoy día 10 de enero han coincidido en Sevilla los tres viajantes. ¿Dentro de cuántos días como mínimo volverán a coincidir en Sevilla? 3.- Andrés tiene en su tienda los botones metidos en bolsas. En la caja A tiene bolsitas de 24 botones cada una y no sobra ningún botón. En la caja B tiene bolsitas de 20 botones cada una y tampoco sobra ningún botón. El número de botones que hay en la caja A es igual que el que hay en la caja B. ¿Cuántos botones como mínimo hay en cada caja? 4.- María y Jorge tienen 25 bolas blancas, 15 bolas azules y 90 bolas rojas y quieren hacer el mayor número de collares iguales sin que sobre ninguna bola. a) ¿Cuántos collares iguales pueden hacer? b) ¿Qué número de bolas de cada color tendrá cada collar? 5.- Un campo rectangular de 360 m de largo y 150 m de ancho, está dividido en parcelas cuadradas iguales. El área de cada una de estas parcelas cuadradas es la mayor posible. ¿Cuál es la longitud del lado de cada parcela cuadrada? 6.- Teresa tiene un reloj que da una señal cada 60 minutos, otro reloj que da una señal cada 150 minutos y un tercero que da una señal cada 360 minutos. A las 9 de la mañana los tres relojes han coincidido en dar la señal. a) ¿Cuántas horas, como mínimo, han de pasar para que vuelvan a coincidir? b) ¿A qué hora volverán a dar la señal otra vez juntos?
Answer

Life Enjoy

" Life is not a problem to be solved but a reality to be experienced! "

Get in touch

Social

© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.