Silnik spalinowy.
ε=11
S=61 mm = 6,1 cm
Vk=40 cm³
d = ?
Stopień sprężania
[tex]\epsilon=\frac{V_s+V_k}{V_k}[/tex]
Vk - objętość komory sprężania (spalania)
Vs - objętość skokowa cylindra
[tex]11=\frac{V_s+40 \ [cm^3]}{40 \ [cm^3]}\\ \\11*40 \ [cm^3]-40 \ [cm^3]=V_s\\ \\V_s=400 \ cm^3[/tex]
[tex]V_s=\pi r^2*S=\pi (\frac{d}{2})^2S=\frac{\pi d^2S}{4}[/tex]
[tex]V_s=\frac{\pi d^2S}{4}\\ \\4V_s=\pi d^2S\\ \\d=\sqrt{\frac{4V_s}{\pi S}}=\sqrt{\frac{4*400 \ [cm^3]}{\pi *6,1 \ [cm]}}\approx9,14 \ cm[/tex]
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Silnik spalinowy.
ε=11
S=61 mm = 6,1 cm
Vk=40 cm³
d = ?
Stopień sprężania
[tex]\epsilon=\frac{V_s+V_k}{V_k}[/tex]
Vk - objętość komory sprężania (spalania)
Vs - objętość skokowa cylindra
[tex]11=\frac{V_s+40 \ [cm^3]}{40 \ [cm^3]}\\ \\11*40 \ [cm^3]-40 \ [cm^3]=V_s\\ \\V_s=400 \ cm^3[/tex]
[tex]V_s=\pi r^2*S=\pi (\frac{d}{2})^2S=\frac{\pi d^2S}{4}[/tex]
[tex]V_s=\frac{\pi d^2S}{4}\\ \\4V_s=\pi d^2S\\ \\d=\sqrt{\frac{4V_s}{\pi S}}=\sqrt{\frac{4*400 \ [cm^3]}{\pi *6,1 \ [cm]}}\approx9,14 \ cm[/tex]