AB -średnica okręgu, A=(-2;5) oraz B =(4; -1) Jeżeli AB jest średnicą okręgu, to środek AB jest środkiem okręgu oraz promień ma długość równą połowie długości AB. O - środek okręgu i zarazem środek odcinka AB: O =[(-2+4)/2;(5 -1)/2] = (1; 2) AO = r r² =(1+2)² + ( 2 - 5)² =3² +(-3)² =9 +9 = 18 Równanie okręgu ma postać (x -1)² + (y -2 )² = 18 r =√18 = √9*√2 =3√2 Odp. (x - 1)² +( y - 2)² = 18
AB -średnica okręgu, A=(-2;5) oraz B =(4; -1)
Jeżeli AB jest średnicą okręgu, to środek AB jest środkiem
okręgu oraz promień ma długość równą połowie długości AB.
O - środek okręgu i zarazem środek odcinka AB:
O =[(-2+4)/2;(5 -1)/2] = (1; 2)
AO = r
r² =(1+2)² + ( 2 - 5)² =3² +(-3)² =9 +9 = 18
Równanie okręgu ma postać
(x -1)² + (y -2 )² = 18
r =√18 = √9*√2 =3√2
Odp. (x - 1)² +( y - 2)² = 18
średnica: |AB|=pod pierwiastkiem: (-2-4)^+(5-1)^=36+16=pierw. z 52= 2 pierw. z 13
r=pierw z 13
Środek odcinka AB: S ab =(-2+4/2, 5+1/2)=(1,3)
rówanie okręgu to: y=(x-1)^+(y-3)^=13
Pan/Pani wyżej pomylił/a wzór na środek