" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Matematika SMA Kelas XII
Metode Integral Parsial
Cara Pertama
∫ 3x.cos 2x dx
u = 3x ⇒ hasil turunannya du = 3 dx
dv = cos 2x dx ⇒ hasil integralnya v = ¹/₂.sin 2x
∫ u. dv = u.v - ∫ v.du
= [3x][¹/₂.sin 2x] - ∫ [¹/₂.sin 2x][3 dx]
= ³/₂.x sin 2x - ³/₂.∫ sin 2x dx
= ³/₂.x sin 2x - ³/₂.[- ¹/₂.cos 2x] + c
= ³/₂.x sin 2x + ³/₄.cos 2x dx + c
Cara Kedua
∫ 3x.cos 2x dx
3 | ¹/₂.sin 2x ⇒ + [3x][¹/₂.sin 2x]
0 | - ¹/₄.cos 2x ⇒ - [3][- ¹/₄.cos 2x]
∫ 3x.cos 2x dx = + [3x][¹/₂.sin 2x] + {- [3][- ¹/₄.cos 2x]}
= ³/₂.x.sin 2x + ³/₄.cos 2x + c
selesai