Respuesta: * (1/16)x^8 - (5/6)x^6 + (1/24)x^4 - x³ - 10x + C
* (2/15)x³ - (37/10)x - 12x + C
Explicación paso a paso:
* Se aplica la fórmula de la integral de una potencia:
∫x^n dx = [x^(n+1)] / (n+1) + C, donde n es un real diferente de -1 y C es la constante de integración.
∫[(1/2)x^7 - 5x^5 - 3x² - 10] dx
= ∫(1/2)x^7 dx - ∫5x^5 dx + ∫(1/6)x³ dx - ∫10dx
= [(1/2)x^8] / 8 - (5/6)x^6 + [(1/6)x^4] / 4 - [3x³/3] - 10x + C
= (1/16)x^8 - (5/6)x^6 + (1/24)x^4 - x³ - 10x + C
* ∫[(1/5)x - 4][2x + 3] dx = ∫[(2/5)x² - (37/5)x - 12] dx
= ∫(2/5)x² dx - ∫(37/5)x dx - ∫12 dx
= (2/5)x³] / 3 - (37/5)x²/2 - 12x + C
= (2/15)x³ - (37/10)x² - 12x + C
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Verified answer
Respuesta: * (1/16)x^8 - (5/6)x^6 + (1/24)x^4 - x³ - 10x + C
* (2/15)x³ - (37/10)x - 12x + C
Explicación paso a paso:
* Se aplica la fórmula de la integral de una potencia:
∫x^n dx = [x^(n+1)] / (n+1) + C, donde n es un real diferente de -1 y C es la constante de integración.
∫[(1/2)x^7 - 5x^5 - 3x² - 10] dx
= ∫(1/2)x^7 dx - ∫5x^5 dx + ∫(1/6)x³ dx - ∫10dx
= [(1/2)x^8] / 8 - (5/6)x^6 + [(1/6)x^4] / 4 - [3x³/3] - 10x + C
= (1/16)x^8 - (5/6)x^6 + (1/24)x^4 - x³ - 10x + C
* ∫[(1/5)x - 4][2x + 3] dx = ∫[(2/5)x² - (37/5)x - 12] dx
= ∫(2/5)x² dx - ∫(37/5)x dx - ∫12 dx
= (2/5)x³] / 3 - (37/5)x²/2 - 12x + C
= (2/15)x³ - (37/10)x² - 12x + C