Álgebra es el nombre que identifica a una rama de la Matemática que emplea números, letras y signos para poder hacer referencia a múltiples operaciones aritméticas. El término tiene su origen en el latín algebra, el cual, a su vez, proviene de un vocablo árabe que se traduce al español como “reducción” o “cotejo”.
Este origen etimológico permitió que, en tiempos pasados, se conociera como álgebra al arte focalizado en la reducción de huesos que estaban dislocados o quebrados. Este significado, de todas maneras, ha caído en desuso.
Hoy entendemos como álgebra al área matemática que se centra en las relaciones, estructuras y cantidades. La disciplina que se conoce como álgebra elemental, en este marco, sirve para llevar a cabo operaciones aritméticas (suma, resta, multiplicación, división) pero que, a diferencia de la aritmética, se vale de símbolos (a, x, y) en lugar de utilizar números. Esto permite formular leyes generales y hacer referencia a números desconocidos (incógnitas), lo que posibilita el desarrollo de ecuaciones y el análisis correspondiente a su resolución.
El álgebra elemental postula distintas leyes que permiten conocer las diferentes propiedades que poseen las operaciones aritméticas. Por ejemplo, la adición (a + b) es conmutativa (a + b = b + a), asociativa, tiene una operación inversa (la sustracción) y posee un elemento neutro (0).
Algunas de estas propiedades son compartidas por distintas operaciones; la multiplicación, por ejemplo, también es conmutativa y asociativa.
Se conoce como Teorema Fundamental del Álgebra, por otra parte, a un postulado según el cual, en una variable no constante donde hay coeficientes complejos, un polinomio posee tantas raíces como marca su grado, debido a que las raíces se tienen en cuenta con sus multiplicidades. Esto supone que el cuerpo de los números complejos es cerrado para las operaciones del álgebra.
Álgebra es el nombre que identifica a una rama de la Matemática que emplea números, letras y signos para poder hacer referencia a múltiples operaciones aritméticas. El término tiene su origen en el latín algebra, el cual, a su vez, proviene de un vocablo árabe que se traduce al español como “reducción” o “cotejo”.
Este origen etimológico permitió que, en tiempos pasados, se conociera como álgebra al arte focalizado en la reducción de huesos que estaban dislocados o quebrados. Este significado, de todas maneras, ha caído en desuso.
Hoy entendemos como álgebra al área matemática que se centra en las relaciones, estructuras y cantidades. La disciplina que se conoce como álgebra elemental, en este marco, sirve para llevar a cabo operaciones aritméticas (suma, resta, multiplicación, división) pero que, a diferencia de la aritmética, se vale de símbolos (a, x, y) en lugar de utilizar números. Esto permite formular leyes generales y hacer referencia a números desconocidos (incógnitas), lo que posibilita el desarrollo de ecuaciones y el análisis correspondiente a su resolución.
El álgebra elemental postula distintas leyes que permiten conocer las diferentes propiedades que poseen las operaciones aritméticas. Por ejemplo, la adición (a + b) es conmutativa (a + b = b + a), asociativa, tiene una operación inversa (la sustracción) y posee un elemento neutro (0).
Algunas de estas propiedades son compartidas por distintas operaciones; la multiplicación, por ejemplo, también es conmutativa y asociativa.
Se conoce como Teorema Fundamental del Álgebra, por otra parte, a un postulado según el cual, en una variable no constante donde hay coeficientes complejos, un polinomio posee tantas raíces como marca su grado, debido a que las raíces se tienen en cuenta con sus multiplicidades. Esto supone que el cuerpo de los números complejos es cerrado para las operaciones del álgebra.