Proszę o rozwiązanie :) sinx-cosx/cos2x
(sinx-cosx)/cos2α=(sinx-cosx)/(cos²x-sin²x)=(sinx-cosx)/(sinx-cosx)(sinx+cosx)= 1/(sinx+cosx)=1/(cos(π/2-x)+cosx)=1/(2cos((π/2-x+x)/2)cos((π/2-x-x)/2)=1/(2cos((π/4))*cos(π/4-x)=√2/(2cos((π/2-2x)/2)=√2/(2sinx)
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
(sinx-cosx)/cos2α=(sinx-cosx)/(cos²x-sin²x)=(sinx-cosx)/(sinx-cosx)(sinx+cosx)= 1/(sinx+cosx)=1/(cos(π/2-x)+cosx)=1/(2cos((π/2-x+x)/2)cos((π/2-x-x)/2)=1/(2cos((π/4))*cos(π/4-x)=√2/(2cos((π/2-2x)/2)=√2/(2sinx)