Odpowiedź:
zad 1
α - kąt ostry rombu = 60°
O - obwód rombu = 16 cm
4a = 16 cm
a - bok rombu = 16 cm : 4 = 4 cm
P - pole rombu = a² * sinα = 4² cm² * sin60° = 16 cm² * √3/2 =
= 16√3/2 cm²= 8√3cm²
zad 2
α - kąt ostry rombu = 45°
h - wysokość rombu = 3 cm
b - krótsza podstawa = 47 cm
Ponieważ kąt ostry ma miarę 45° , więc dłuższa podstawa ma długość :
a = b + 2h= 4 cm + 2 * 3cm = 4 cm + 6 cm = 10 cm
P - pole trapezu = 1/2 * (a + b) * h = 1/2 * (10 + 4) cm * 3 cm =
= 1/2 * 14 cm * 3 cm = 7 cm * 3 cm = 21 cm²
zad 3
a)
(x-3)(x + 6)(3x- 7)=0
x - 3 = 0 ∨ x + 6 = 0 ∨ 3x - 7 = 0
x = 3 ∨ x = - 6 ∨ x = 7/3 = 2 1/3
b)
(x² + 4)(x² - 3)(x³ - 27) = 0
Ponieważ x² + 4 > 0 dla x ∈ R , więc :
x² - 3 = 0 ∨ x³ - 27 = 0
(x -√3)(x + √3) = 0 ∨ x³ = 27
x = √3 ∨ x = - √3 ∨ x = ∛27 = 3
c)
(x² - 7x)(2x² - 3x - 1) = 0
x(x - 7)(2x² - 3x - 1) = 0
x = 0 ∨ x - 7 = 0 ∨ 2x² -3x - 1 = 0
x = 0 ∨ x= 7 ∨ 2x² - 3x - 1 = 0
2x² - 3x - 1 = 0
a = 2 , b = - 3 , c = - 1
Δ = b² - 4ac = (- 3)² - 4 * 2 * ( - 1) = 9 + 8 = 17
√Δ = √17
x₁ = ( - b - √Δ)/2a = ( 3 - √17)/4
x₂ = ( - b + √Δ)/2a = (3 + √17)/4
x = 0 ∨ x = 7 ∨ x = ( 3- √17)/4 ∨ x = (3 + √17)/4
Ponieważ mam wątpliwości co do treści równania (niewyraźnie widać znaki) ,więc przedstawiam rozwiązanie z przypuszczalną treścią
(x² + 7x)(2x² - 3x + 1)= 0
x(x+7)(2x² - 3x+ 1)= 0
x = 0∨ x + 7 = 0 ∨ 2x² - 3x + 1 = 0
x = 0 ∨ x = - 7 ∨ 2x² - 3x + 1 = 0
2x² - 3x + 1 = 0
a = 2 , b = - 3 , c = + 1
Δ = b² - 4ac = (- 3)² - 4 * 2 * 1 = 9 - 8 = 1
√Δ = √1 = 1
x₁ = ( - b - √Δ)/2a = ( 3 - 1)/4 = 2/4 = 1/2
x₂ = ( - b + √Δ)/2a = (3 + 1)/4 = 4/4 = 1
x = 0 ∨ x = - 7 ∨ x = 1/2 ∨ x = 1
zad 4
[(3 + 5x)(x - 2)]/[(2x-7)(x+1)] = 0
założenie:
2x -7 ≠ 0 ∧ x + 1 ≠ 0
x ≠ 7/2 ∧ x ≠ - 1
x ≠ 3 1/2 ∧ x ≠ - 1
D: x ∈ R - { - 1 , 3 1/2}
(3 + 5x)(x - 2) = 0
3x + 5x² - 6 - 10x = 0
5x² - 7x - 6 = 0
a = 5 , b = - 7 , c = - 6
Δ = b² - 4ac = (- 7)² - 4 * 5 * (- 6) = 49 + 144 = 189
√Δ = √189 = √(9 * 21) = 3√21
x₁ = ( - b - √Δ)/2a = (7 - 3√21)/10
x₂ = ( - b + √Δ)/2a = (7 + 3√21 )/10
(x² + 2x)/(x² - 4) = 0
x² - 4 ≠ 0
(x - 2)(x + 2) ≠ 0
x - 2 ≠ 0 ∧ x + 2 ≠ 0
x ≠ 2 ∧ x ≠ - 2
D: x ∈ R - { - 2 , 2 }
x² + 2x = 0
x(x + 2)= 0
x = 0 ∨ x + 2 = 0
x = 0 ∨ x = - 2 nie należy do dziedziny , więc :
x = 0
(2x-3)/(3 + 4x) = - 2/5
3 + 4x ≠ 0
4x ≠ - 3
x ≠ - 3/4
D: x ∈ R - { - 3/4}
(3 + 4x) * (- 2) = 5(2x-3)
- 6 - 8x = 10x - 15
- 8x - 10x = - 15 + 6
- 18x= - 9
18x = 9
x = 9/18 = 1/2
zad 5
7 , a , b , 16
a₁ = 7
a₂ = a₁ + r = a
a₃ = a₁ + 2r = b
a₄ = a₁ + 3r = 7 + 3r = 16
7 +3r = 16
3r = 16 - 7 = 9
r - różnica ciagu = 9/3 = 3
a = a₁ + r = 7 + 3 = 10
b = a₁ + 2r = 7 + 2 *3 = 7 + 6 = 13
zad 6
a₁ = 18
a₂ = a₁q = 6
a₁q =6
18q = 6
q - iloraz ciągu = 6/18 = 1/3
a₃ = a₂q = 6 * 1/3 = 2
a₄ = a₃q = 2 * 1/3 = 2/3
a₅ = a₄q = 2/3 * 1/3 = 2/9
a₆ = a₅q = 2/9 * 1/3 = 2/27
S₆ = a₁ + a₂ + a₃ + a₄ + a₅ + a₆ = 18 + 6 + 2 + 2/3 + 2/9 + 2/27 =
= 26 + 18/27 + 6/27 + 2/27 = 26 26/27
zad 7
aₙ =(- 1)ⁿ + (2 - n)/n² ; n ≥ 1
a₂= (- 1)² + (2 - 2)/2² = 1 + 0/4 = 1 + 0 = 1
a₅ = ( - 1)⁵ + (2 - 5)/5² = - 1 + (- 3/25) = - 1 - 3/25 = - 1 3/25
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
Odpowiedź:
zad 1
α - kąt ostry rombu = 60°
O - obwód rombu = 16 cm
4a = 16 cm
a - bok rombu = 16 cm : 4 = 4 cm
P - pole rombu = a² * sinα = 4² cm² * sin60° = 16 cm² * √3/2 =
= 16√3/2 cm²= 8√3cm²
zad 2
α - kąt ostry rombu = 45°
h - wysokość rombu = 3 cm
b - krótsza podstawa = 47 cm
Ponieważ kąt ostry ma miarę 45° , więc dłuższa podstawa ma długość :
a = b + 2h= 4 cm + 2 * 3cm = 4 cm + 6 cm = 10 cm
P - pole trapezu = 1/2 * (a + b) * h = 1/2 * (10 + 4) cm * 3 cm =
= 1/2 * 14 cm * 3 cm = 7 cm * 3 cm = 21 cm²
zad 3
a)
(x-3)(x + 6)(3x- 7)=0
x - 3 = 0 ∨ x + 6 = 0 ∨ 3x - 7 = 0
x = 3 ∨ x = - 6 ∨ x = 7/3 = 2 1/3
b)
(x² + 4)(x² - 3)(x³ - 27) = 0
Ponieważ x² + 4 > 0 dla x ∈ R , więc :
x² - 3 = 0 ∨ x³ - 27 = 0
(x -√3)(x + √3) = 0 ∨ x³ = 27
x = √3 ∨ x = - √3 ∨ x = ∛27 = 3
c)
(x² - 7x)(2x² - 3x - 1) = 0
x(x - 7)(2x² - 3x - 1) = 0
x = 0 ∨ x - 7 = 0 ∨ 2x² -3x - 1 = 0
x = 0 ∨ x= 7 ∨ 2x² - 3x - 1 = 0
2x² - 3x - 1 = 0
a = 2 , b = - 3 , c = - 1
Δ = b² - 4ac = (- 3)² - 4 * 2 * ( - 1) = 9 + 8 = 17
√Δ = √17
x₁ = ( - b - √Δ)/2a = ( 3 - √17)/4
x₂ = ( - b + √Δ)/2a = (3 + √17)/4
x = 0 ∨ x = 7 ∨ x = ( 3- √17)/4 ∨ x = (3 + √17)/4
Ponieważ mam wątpliwości co do treści równania (niewyraźnie widać znaki) ,więc przedstawiam rozwiązanie z przypuszczalną treścią
(x² + 7x)(2x² - 3x + 1)= 0
x(x+7)(2x² - 3x+ 1)= 0
x = 0∨ x + 7 = 0 ∨ 2x² - 3x + 1 = 0
x = 0 ∨ x = - 7 ∨ 2x² - 3x + 1 = 0
2x² - 3x + 1 = 0
a = 2 , b = - 3 , c = + 1
Δ = b² - 4ac = (- 3)² - 4 * 2 * 1 = 9 - 8 = 1
√Δ = √1 = 1
x₁ = ( - b - √Δ)/2a = ( 3 - 1)/4 = 2/4 = 1/2
x₂ = ( - b + √Δ)/2a = (3 + 1)/4 = 4/4 = 1
x = 0 ∨ x = - 7 ∨ x = 1/2 ∨ x = 1
zad 4
a)
[(3 + 5x)(x - 2)]/[(2x-7)(x+1)] = 0
założenie:
2x -7 ≠ 0 ∧ x + 1 ≠ 0
x ≠ 7/2 ∧ x ≠ - 1
x ≠ 3 1/2 ∧ x ≠ - 1
D: x ∈ R - { - 1 , 3 1/2}
(3 + 5x)(x - 2) = 0
3x + 5x² - 6 - 10x = 0
5x² - 7x - 6 = 0
a = 5 , b = - 7 , c = - 6
Δ = b² - 4ac = (- 7)² - 4 * 5 * (- 6) = 49 + 144 = 189
√Δ = √189 = √(9 * 21) = 3√21
x₁ = ( - b - √Δ)/2a = (7 - 3√21)/10
x₂ = ( - b + √Δ)/2a = (7 + 3√21 )/10
b)
(x² + 2x)/(x² - 4) = 0
założenie:
x² - 4 ≠ 0
(x - 2)(x + 2) ≠ 0
x - 2 ≠ 0 ∧ x + 2 ≠ 0
x ≠ 2 ∧ x ≠ - 2
D: x ∈ R - { - 2 , 2 }
x² + 2x = 0
x(x + 2)= 0
x = 0 ∨ x + 2 = 0
x = 0 ∨ x = - 2 nie należy do dziedziny , więc :
x = 0
c)
(2x-3)/(3 + 4x) = - 2/5
założenie:
3 + 4x ≠ 0
4x ≠ - 3
x ≠ - 3/4
D: x ∈ R - { - 3/4}
(3 + 4x) * (- 2) = 5(2x-3)
- 6 - 8x = 10x - 15
- 8x - 10x = - 15 + 6
- 18x= - 9
18x = 9
x = 9/18 = 1/2
zad 5
7 , a , b , 16
a₁ = 7
a₂ = a₁ + r = a
a₃ = a₁ + 2r = b
a₄ = a₁ + 3r = 7 + 3r = 16
7 +3r = 16
3r = 16 - 7 = 9
r - różnica ciagu = 9/3 = 3
a = a₁ + r = 7 + 3 = 10
b = a₁ + 2r = 7 + 2 *3 = 7 + 6 = 13
zad 6
a₁ = 18
a₂ = a₁q = 6
a₁q =6
18q = 6
q - iloraz ciągu = 6/18 = 1/3
a₃ = a₂q = 6 * 1/3 = 2
a₄ = a₃q = 2 * 1/3 = 2/3
a₅ = a₄q = 2/3 * 1/3 = 2/9
a₆ = a₅q = 2/9 * 1/3 = 2/27
S₆ = a₁ + a₂ + a₃ + a₄ + a₅ + a₆ = 18 + 6 + 2 + 2/3 + 2/9 + 2/27 =
= 26 + 18/27 + 6/27 + 2/27 = 26 26/27
zad 7
aₙ =(- 1)ⁿ + (2 - n)/n² ; n ≥ 1
a₂= (- 1)² + (2 - 2)/2² = 1 + 0/4 = 1 + 0 = 1
a₅ = ( - 1)⁵ + (2 - 5)/5² = - 1 + (- 3/25) = - 1 - 3/25 = - 1 3/25