" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2025 KUDO.TIPS - All rights reserved.
(2X³ - 6X² + 8)/(2X - 4)
2(X³ - 3X² + 4)/2(X - 2)
[X³ - 3X² + 4] Divido entre (X + 1)
X³ - 3X² + 4 = (X + 1)(X² - 4X + 4)
(X² - 4X + 4) = (X - 2)(X - 2)
[(X + 1)(X - 2)(X - 2)]/(X - 2)
Rta: El multiplo de 2X - 4 es (2X³ - 6X² + 8)
2) Maximo comun multiplo para:
X³ - 10X² + 31X - 30 y X³ - 5X² - 4X + 20
X³ - 10X² + 31X - 30 (Divido entre X - 2)
X³ - 10X² + 31X - 30 = (X - 2)(X² - 8X + 15)
(X² - 8X + 15) = (X - 3)(X - 5)
X³ - 10X² + 31X - 30 = (X - 2)(X - 3)(X - 5)
Ahora para
X³ - 5X² - 4X + 20
(X³ - 5X²) - (4X - 20)
X²(X - 5) - 4(X - 5)
(X - 5)(X² - 4)
(X² - 4) = (X² - 2²) = (X - 2)(X + 2)
X³ - 5X² - 4X + 20 = (X - 5)(X - 2)(X + 2)
Los dos tiene en comun a (X - 5)(X - 2)
(X² - 2X - 5X + 10) = (X² - 7X + 10)
Rta: El maximo comun divisor es X² - 7X + 10
3) [(X² + 4X + 4)/(X² - 5X + 6)]/[(X² + 2X)/(X² - 4)]
Vamos por partes:
X² + 4X + 4 = (X + 2)(X + 2)
X² - 5X + 6 = (X - 2)(X - 3)
X² + 2X = X(X + 2)
X² - 4 = X² - 2² = (X - 2)(X + 2)
[((X + 2)(X + 2))/((X - 2)(X - 3))]/[(X(X + 2))/((X - 2)(X + 2))]
Extremos sobre medios
[((X + 2)(X + 2))((X - 2)(X + 2))]/[((X - 2)(X - 3))((X(X + 2))]
Cancelo 1 (X + 2) arriba y abajo y (X - 2)
Queda: [(X + 2)(X + 2)]/[X(X - 3)]
(X + 2)(X + 2) = (X + 2)²
Queda: [(X + 2)²]/[X(X - 3)]
Rta: Se reduce a [(X + 2)²]/[X(X - 3)]