" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
3senx + 4cosx = 2
3senx = 2 - 4cosx Elevas ambos miembros de la ecuacion al cuadrado
(3senx)² = (2 - 4cosx)² Aplicas (a - b)² = a² - 2ab + b²
3²sen²x = 2² - 2(2)(4cosx) + (4cosx)²
9sen²x = 4 - 16cosx + 4²cos²x
9sen²x = 4 - 16cosx + 16cos²x (pero sen²x = 1 -cos²x por identidad
fundamental)
9(1 - cos²x) = 4 - 16cosx + 16cos²x
9 - 9cos²x = 4 - 16cos + 16cos²x
0 = 4 - 16cosx + 16cos²x - 9 + 9cos²x
0 = 25cos²x - 16cosx - 5
25cos²x - 16cosx - 5 = 0
Utilizas formula para hallar los valores de x
x = [- b +/-√(b² - 4ac)]/2a
a = 25
b = - 16
c = - 5
x = [ -(- 16)+/-√((-16)² - 4(25)(- 5)]/(2 * 25)
X = [16 +/- √(256 + 500)]/50
x = [16 +/-√756]/50
x = [16 +/-√(4 * 189)/50
x = [16 +/- 2√189]/50 Simplificas sacas mitad
x = [8 +/-√189]/25
x₁ = [8 + √189]/25
x₂ = [ 8 - √189]/25
x₁ = (8 + 13,747]/25
x₁ = 21,747/25
x₁ = 0,86988
x₁ = cos⁻¹ 0,86988
x₁ = 29,55° + 360k
x₂ = (8 - 13,747)/25
x₂ = - 5,747/25
x₂ = - 0,22988
x₂ = cos⁻¹ 0,22988
x₂ = 103,29° +360k
k debe ser un numero natural ≥1