K3−K2+K3−127(K-13)3" role="presentation" style="outline: 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 30.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">(K−13)3(K-13)3
Utilizar el teorema del binomio.
K3+3K2(-13)+3K(-13)2+(-13)3" role="presentation" style="outline: 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 24.752px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 10.769em; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; width: 338px; position: relative;">K3+3K2(−13)+3K(−13)2+(−13)3K3+3K2(-13)+3K(-13)2+(-13)3
Simplifique cada término.
Toca para ver más pasos...
K3-K2+K3-127" role="presentation" style="outline: 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 24.752px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">K3−K2+K3−127
" Life is not a problem to be solved but a reality to be experienced! "
© Copyright 2013 - 2024 KUDO.TIPS - All rights reserved.
K3−K2+K3−127(K-13)3" role="presentation" style="outline: 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 30.94px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">(K−13)3(K-13)3
Utilizar el teorema del binomio.
K3+3K2(-13)+3K(-13)2+(-13)3" role="presentation" style="outline: 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 24.752px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 10.769em; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; width: 338px; position: relative;">K3+3K2(−13)+3K(−13)2+(−13)3K3+3K2(-13)+3K(-13)2+(-13)3
Simplifique cada término.
Toca para ver más pasos...
K3-K2+K3-127" role="presentation" style="outline: 0px; display: inline-block; line-height: 0; text-indent: 0px; text-align: left; text-transform: none; font-style: normal; font-weight: normal; font-size: 24.752px; letter-spacing: normal; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">K3−K2+K3−127